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A COST OPERATOR APPROACH TO MULTISTAGE
LOCATION-ALLOCAT ION
by

Robert V. Nagelhout and Gerald L. Thompson

Euﬂu multistage factory-warehouse location-allocation problem is to
decide on locations of warehouses and shipping amounts from the factories
through the warehouses to meet customer demands in such a way that the
total fixed plus variable costs are minimized. Capacity constraints at
factories and warehouses are also imposed.

We present a cost operator algorithm for solving this problem. The
algorithm takes into account the network structure and the submodularity of
the objective function. Computational results with problems taken from the

literature as well as new problems are provided.

c




1. Introduction

In this paper we present a cost operator algorithm for solving multistage
factory warehouse location-allocation problems. The decision variables cor-
respond to the warehouse locations and the shipping amounts from the factories
through the warehouses and into the demand centers. The problem is to minimize
the total fixed costs of locating warehouses plus the total variable shipping
cost, subject to possible capacity restrictions at the factories and the ware-
houses, plus the demand requirements at the demand centers. ]
The algorithm takes advantage of the network structure of the supply |
and demand constraints and the submodularity of the objective function. We
use cost operators [22], to facilitate the movement up and down the search
tree. This greatly reduces the amount of time spent solving transportation
subproblems, which frequently comprises up to 90% of the computational burden.
In Section 2 we give a prodblem formulation and we discuss some of the
more recent research related to the multistage location problem. 1n Section 3
we point out lower bounds and fathoming rules obtainable from submodular set
functions. In Section 4 we transform the multistage location problem into a
transportation problem format, and we show how cost operators can be used to
generate feasible solutions. Section 5 contains a description of the cost
operator branch and bound algorithm. In Section 6 we give an example, and
in Section 7 we provide extensive computational experience on problems from

the literature plus some multistage problems of our own.

2. obl ul

We describe the location problem to be studied in this paper as well as

similar models which have been presented {n the literature. We use the following

notation:
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q = number of factories; 1’ = {1,...,q}
L = number of warehouses; I = {q+l,...,m}
r = number of demand centers

m « q+l+1; nelsr+l; J oeil,...t), Je= {Lel,...,n}

t1 = fixed cost ot opening warehouse |
/ P
. factory i to tcx:
‘warehouse ) jel
cost per distance factory 1 to te1’

IS - per unit of

i} shipping from ‘demand center | jeJ
warehouse { to iel
k demand center § jeJ
Ai » capacity of factory |
Sl e capacity of warehouse i
dJ = demand at location
x‘j = amount shipped from location { to location
" l {f warehouse { {s open
o 0 otherwise

The multistage or intermediate location problem, which we will call

Problem P, can be formulated as:

Minimize 2(T) = T o Sk . % £ LY (1)
<1 te1’'UT Jes'ug 11 o tH
subject to
i B <A te1’ )
jCJ, O | lj {
f x - Sy <0 ieT Q)
je3 U 171
 rpdl >d jed (%)
te1’ur M 3

e e —
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I x oo B w0 ieT (5)
b1’ ™ jeg M
%y, 20 te1’'VUI, jeJ'UJ (6)
1 ieT
Yq . 0 otherwise )

Constraints (2) and (3) ensure that the amount shipped out of a factory or a
warehouse should not exceed its capacity. Constraints (4) require that the
demand at each demand center be satisfied. Constraints (5) are the standard
“"conservation of flow" constraints which require that the amount shipped into

each warehouse equals the amount shipped out. Constraints (6) and (7) are the

: nonnegativity and integrality constraints respectively. The objective in
problem P i{s to minimize the total transportation costs from shipping plus
the total fixed costs of opening warehouses, while satisfying the customer

demand. When

3. % X 4 (8)

ve say that warehouse { (s capacitated since it cannot satisfy all of the

demand by itself. The factories can also be either capacitated or uncapacitated

depending upon the size of A Note that in the multistage formulation when

T
1" ¢ 9, the total warehouse capacity need not exceed the total demand since
units can alsoc be shipped directly from the factories to the demand centers.
: A considerable amount of research has been performed on uncapacitated,
E capacitated, and mixed (partly capacitated) location problems. It seems that

each problem which is studied, depending upon the objective function and the

capacity assumption, exhibits its own characteristics and yields a different

algorithmic approach. Thus the literature on the many different location ;

NN+ -~y
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problems is enormous. In this section we will discuss recent literature only
for those problems which are closely related to P.

Research on multistage location problems has been limited. Geoffrion
and Graves [12] described and tested an algorithm for solving multistage £
multicommodity distribution systems using Benders' decomposition. Ellwin |
and Gray (8] described and tested an algorithm for solving single stage i
(1" = 9) location problems and proposed, but did not test, an algorithm for
solving multistage problems. Most of the papers in the literature have con-
centrated on the single stage version of P for which 1’ = @. This has "
been called the simple (capacitated or un.apacitated) warehouse location

problem which we denote by Pl. Some of the models which have been studied

impose added configuration constraints on Pl which restrict the total }
number, and different combinations of warehouses which can be opened. For

example, a constra:nt frequently used is:

p » y, S K 9)
iel

wvhere K 1{s an upper limit on the total number of warehouses which can be

I ——

opened. In the special case where f1 = 0 for 1i¢l and each warehouse is

uncapacitated, Pl with constraini armended is called the K med. n

ey e

problem. Both heuristic {14] and exact methods (5], {16], {21}, have been :

proposed for solving the K median problem.
Earlier attempts at solving the uncapacitated Pl concentrated upon

the relaxation, Pl’, of Pl where (7) is replaced by:

0y, <1 iel 10)

(see (6], [7]). The basic idea was to solve Pl by imbedding Pl’ {into an
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implicit enumeration scheme. Since then Pl° has been called the weak linear
ORr elaxation of Pl. It is termed 'weak' because there is another
linear programming relaxation of Pl which has proven to be much stronger than

Pl’'. To describe the latter, we add to problem Pl the constraints:

< { }
‘l) < min ~St.djjy‘ icl, jeJ . (11)

Let us denote by P1” cthe problem in which the constraints (l1) are added to

Pl . For uncapacitated location problems Pl1” is called the strong linear

programming relaxation of Pl. (Note that for uncapacitated location problems

mtnisi.dj; « mini=,1} = 1). PI” {s stronger than Pl’ {in the sense that the

gap between the optimal values of Pl and P1“ {s normally much smaller than

the gap between the optimal values of Pl and Pl’. Also, it is often the

case for uncapacitated location problems, that a solution to Pl1” will satisfy,

or almost satisfy (7). That is, after solving Pl1" almost all of the fixed

charge variables will be naturally integer. However, even though optimal

solutions to Pl” tend to be close approximations to an optimal solution for

Pl, researchers have attempted to avoid solving P1” directly, because it

has an ercrmous number of constraints (there are mxn constraints of the type

(11)). Schrage [20], has proposed a method for solving linear programs which

handles constraints of the type (l11) implicitly, thereby reducing storage

requirements. Still the time required to solve Pl1” by the simplex method

can be excessive and could cause difficulties in an implicit enumeration scheme.
Instead of solving Pl directly, heuristic methods have been proposed

wvhich find feasible solutions to the dual of P1” . To describe these approaches

*
let us denote by xPl a feasible, and by xn an optimal solution to problem Pl.
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Let Z(X) represent the objective function value for solution X. Also let

D be the dual problem to problem P1” . Then by duality theory we know that:
I 16 R 12
Z(XPl 2 xplu ) = Z(xD 2 Z(XD) (12)

where x; is an optimal and xb a feasible solution to D. Thus a feasible
solution to D provides a valid lower bound on the optimal objective function
value of Pl. Subgradient [4] and dual ascent methods (3], [9] have been used

to find good feasible solutions to D. In the case where Pl {s uncapacitated

one can easily compute a low cost primal solution to Pl after having found the
feasible solution to D. Furthermore it is often the case when Pl is
uncapacitated that the gap, z(x;‘) - Z(X;). is very small or even zero,

which makes the additional work to get optimal solutions small. Thus the
relaxation Pl” has been very effective in solving the simple uncapacitated
warehouse location problems,

Several algorithms also exist for solving capacitated location problems.

Akinc and Khumawala (1], proposed and tested an implicit enumeration algorithm
which uses Pl’ as a relaxation. Ellwin and Gray [8) described and tested

a branch and bound algorithm which uses duality properties of Pl and bounds
obtainable from the submodularity of the objective function (1) for fathoming.
Guignard and Spielberg [13] have generalized the dual ascent method of Bilde-
Krarup (3] and Erlenkotter [9] to the capacitated version of Pl. They use a

relaxation very similar to Pl1” which contains the constraints (11). They

solved some randomly generated problems and found that the zero gap phenomenon
« -
between Z(xPl) and Z(XD) occurs less frequently with capacitated or mixed

problems, than {t does with uncapacitated problems. Other relaxations besides

’

Pl and P1” have also been used to solve Pl. Geoffrion and McBride [11)
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have considered a location model for which Pl 1is a special case and have
used a Lagrangian relaxation combined with implicit enumeration to solve it.
Recently Nauss (17] used a Lagrangian relaxation to solve Pl with excellent
computational results.

In the following sections we will describe an algorithm for solving P.
The general approach is similar to the one used in [8] to solve Pl. We do
not solve a relaxation of P. Instead we make use of some lower bounds obtain-
able from the submodular property of Z, together with some other fathoming
rules, to enumerate explicitly a subset of the soluticns to P. The movement
in the search tree from one solution to another is facilitated by applying cost
operators [21) to P. This significantly reduces the amount of effort required
to solve P, since most researchers have found that the majority of the time
involved in solving capacitated location problems {s spent solving transportation
subproblems. Ellwin and Gray [8] have tested and shown that in many cases over
90% of the time required to solve a test problem is spent solving transportation
subproblems. In the next section we discuss some lower bounds on the value of 2Z,

some of which are utilized in the algorithm described in Section 5.

3. Objective Function lower Bounds

Many of the lower bound properties which we present here have been dis-
cussed in [2]) and [(10], in the context of the simple uncapacitated location
problem. These lower bounds and their properties are also useful in solving
other kinds of mathematical programming problems.

There are many properties which can be used to define submodular set
functions. For a discussion of them see [18]. To define one such function

let Z be a real valued function defined on the finite set of subsets of I.
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For notational convenience we define:

HBM)-ZGUB)-Z“) AcI, B=1 (13)

Then any of the following properties can be used to define a submodular

function:
L) Z(A'B) + Z(ATB) > Z(A) + Z(B) for all subsets A,BCI.
(ii) Azt(A) SAZt(B) VASB-I, (icl (14)
(i1i) Let {Bl,....lr} be a partition of B-A; then
Z(A) > 2(B) - E 518 (B - Bk) A-B=1. (15)
k=1 k

In most expositions property (i) is taken to be the definition of submodularity,
and properties (ii) and (iii) are shown to be equivalent. Details are omitted.
In the context of this paper, Z(A) represents (l). The fact that 2Z(A)
is submodular was proved in [15]. Note that in P, 2Z(®) represents the value
of the solution where all of the shipments originate from the factories. When
'

1 =@, as in Pl, one must be careful in defining 2(A) if A happens to

be infeasible set of warehouses, i.e., when ) S1 < k dj' In this case we
{eA j&J

we define a "dummy factory' which is always available to service the demand
centers but at a high shipping cost. This makes Z(A) large enough so that

the value of Z(A) for any infeasible A {is at least as large as the value of
any feasible solution. The dummy factory approach preserves the submodularity
of Z and also yields a different value of Z for solutions having different
degrees of infeasibility. As we will see later, this is helpful in deciding
which warehouses to open when we are working with infeasible sets of warehouses.

Properties (l4) and (15) can be interpreted as adding or subtracting ware-

houses from a given set A of open warehouses. For example property (l&4)

——
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says that the addition of warehouse 1 to the set A decreases the total

cost by at least as much as the addition of warehouse { to the set B when

A = B. Thus it is similar to the ''decreasing returns to scale" condition in
economics.

Properties (l%) and (15) can be used to characterize solutions to P
and to derive lower bounds on the value of any solution to P. The algorithm

to be described in Section 5 searches for sets T = I which have the following

two properties:

(i) ;zt(r) 20 viel-T

‘ (i1) ;zi(r-{x}w;o VierT

Sets T = I which satisfy (i) and (ii) are such that the addition to T or the
deletion from T of a single facility does not cause Z to decrease. Clearly
any optimal solution to P satisfles (1) and (ii{). In a sense properties (i)
and (ii) characterize the set of all "locally optimal" solutions to P. The
globally optimal solution is the best locally optimal solution, which must be
found by a search process. One of the factors which make it hard to find the

: globally optimal solution is that there are many locally optimal solutions which
have nearly optimal objective function values. Thus in any enumeration procedure,
a considerable amount of effort i{s normally required to eliminate these nearly |

optimal solutions from consideration. In a practical sense however, it may

be true that the nearly optimal solutions, say those within 1% of optimality

may indeed be as valuable or "as optimal" to a decision maker as a globally

optimal solution. Given the inaccuracies in the cost data and other environ-
mental and polilical factors which must be taken into consideration, it would be

desirable to have not only an optimal solution to P, but in addition a list of *
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solutions which are nearly optimal. We will point out how this may be ac-

complished using the algorichm of Section 5.

In the initialization phase of any location algorithm, two rules can
be applied in order to permanently open or close warehouses.
RULE 1. If &Zl(l -1 =0 for any { € I then the warehouse

i will be open in some optimal solution to P.

To see this suppose that T is an optimal set of warehouses and 1 ¢ T. By

property (l4)

utﬂ)-za-{u)-zn);aﬂ(x-{U)~o, ‘

thus T U {4} 1s also an optimal solution. {

RULE 2. If LZ‘(I') >0 for any { ¢ I, where l. is the set

of warehouses opened by application of RULE 1, then warehouse i

will be closed in some optimal solution to Pl.
The justification for RULE 2 {s similar to that for RULE 1. We will show,
in the next section how the testing of RULE | and RULE 2 requires only
the application of two cost operators for each warehouse. In many cases, as

will be seen in Section 7, RULES | and 2 can be used to fix open and closed a

large portion of the warehouses in an optimal solution.

Another property of submodular set functions which can be derived from

%

(14) and (15) is the following: Let {Al.....Arz and (Qx.....Qt] be

partitions of A - T such that Q1 = A’ for each { = 1,...,t and some

Jm k... x. Then
r t

2(T) > 2(A) - T 82, (A-A) > 2(A) - Tz (A-Q,) (16)
kel N K kel % K

for all subsets T satisfying T < A & I. The quantity on the right hand side
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of (15) provides a valid lower bound on the value of Z(T), for any T = I.
Property (6) sayz when we use a more refined partition of A - T, we get a

weaker lower bound. Suppose we let A = I. Then the most refined partition of

1 - T is clearly {{ll}.....{tt}f where ik €¢1-T and ¢t = |I- l.
Then for this partition (16) yields:
t
zm 220 - T sz (- (1D . a7)

k=l Kk

Among the class of lower bounds (15), (17) i{s the weakest. Notice that once
Rule ! has been applied all of the terms on the right hand side of (17) have
been calculated. Thus (17) can be applied at any time atter Rule 1 has been
tested without any extra computational effort. A stronger lower bound than (17)
could be obtained with some added computational effort by partitioning I into

of size two and calculating QZA (1 - Ak)' We have not yet tested
k

sets, Ak'

this idea.
Another fathoming device which provides an upper bound on the maximum

number of warehouses in an optimal solution to P can be obtained as follows:

-
K ""'fk . k‘ €1l -1, be a nondecreasing ordering
1 t
-
of the fixed charges not in I . Define

-
let te |I -1|. Let f

P *
DVji - QZJ‘(I - \11,) - (l' j‘ «cl-1 (18)

and let va .....va be nonincreasing ordering of the DVJ . (Note that
1 t i

DV, < 0.) The quantity -DV represents the smallest possible incremental
i

j .

i
savings on the total shipping cost when warehouse Ji i{s opened. Let zY be
any upper bound on the optimal objective function value for P. Then an upper

*
bound on the number of warehouses in an optimal solutfion to P (containing I )

- L 3
s 1! 4k vhere,
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L ] * - *
k t-k‘ ‘ a K +l t-k -l‘ :
3(1)=Tt + L £, + Clow I<2®cs@) - L4,+ 5 g+ T Jow, |
lel ¢ la] ky s=l Is Lel ¢ LS kL s=] )c

Note that the first two terms on the right hand side of (19) give the smallest
®

possible shipping cost, the next term is the smallest sum of k <+ 1 fixed

charges, and the last term is the smallest possible cost of closing down

*
t-(k =+ 1) warehouses. Therefore the right hand side of (19) is a lower bound

* *
on the value of an optimal solution to P containing 11 I + k + 1 warehouses.

If this lower bound exceeds Zu then any optimal solution will contain at most
.- -
‘T | + k open warehouses.

In the algorithm of Section 5 we use as fathoming devices bounds obtained

from (17) on the value of an optimal solution, and bounds obtained from (19) on

the number of warchouses in an optimal solution.

4. Use of Cost Operators to Solve Problem P.

Given the choice of a subset T < I, problem P becomes an ordinary
transshipment problem. Rather than resolving this problem each time T changes,
we use the operator theory of parametric programming [22] to change the problem
and derive the new optimal solution simultaneously.

We shall say that cell ({,j) has been fixed out of the basis when a cell
cost operator has been applied to the problem and its solution so that the

cost has been driven to +M, where M {s so large that «x =0 {n

‘1) 1)
any optimal solution to the new problem.

We also say that cell ({,)) has been fixed in the basis when a cell
cost operator has been applied to the problem and its solution so that the

cost ¢ has been driven to -M, where M {s so large that x

= th(s‘.dj)

i)

in any optimal solution to the new problem.

i)
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Figure 1 shows an example of a 2x¥3x4 mulristage location problem.
Rows | and 2 correspond to the factories, rows 3, 4, and 5 to the warehouses,
and row 6 represents the dummy factory. Columns 1, 2 and 3 correspond to the
warehouses, columns 4 through 8 to the demand centers, and column 9 is a slack
column. Rows 1l and 2 contain the costs of shipping from the factories to the
warehouses and from the factories directly to the demand centers. Cells (3,1),
(4,2), and (5,3) contain the fixed charge of the corresponding warehouse,
divided by {ts capacity. In any solution to P, these cells will contain the
unused warehouse capacity. Cells (3,2), (3,3), (4,1), (4,3), (5,1) and (5,2)
cannot be used because of their large costs, in effect these arcs have been
removed from the problem. The cells in rows 3 through 5, and columns &4 through
8, contain the costs of shipping from each of the warehouses to each of the
demand centers plus the proportional fixed charges. Notice that some of the
cells {n dummy factory row & and slack column 9 contain two costs. This can

be explained in the following manner. To obtain the solution where:

- s 0 set < = -M and = =M

in cm.t-q

. P 1 set Sen " M and cm.t-q - M

(in Figure 1|, m = 6, n =8, q =2, and { ¢ (3,4,5)).

To see this consider the problem shown in Figure 2. By solving the
transportation problem {n Figure 2 we would obtain an optimal solution to P
when T = (2,3], {.e., when warehouse 1 i{s closed and warehouses 2 and 3 are
open. Notice that cell (3,8) has a cost of <M, thus in the optimal solution
X8 * 33' which has the effect of closing down warehouse 1. Cell (6,1) has
a cost of <M which causes all of the demand in column 1 to be satisfied by

the dummy factory f.e., x, , = §.. Thus setting €ig " M and o1 * M

61 3
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effectively closes down warehouse 1. On the other hand for warehouse 2,

€8 " M and coz = M, so that xés - be = 0. This causes the demand in

’

column 2 to be satisfied from rows 1, 2, or 4. The shipments from rows ! and 2
represent units being shipped from factories 1 and 2 to warehouse 2. The

shipment from row 4 in column 2 represents the unused warehouse capacity, and

it is charged at the proportional fixed charge rate. Notice that if cell (4,2) 8
contains

units then exactly s& - X units can be used to ship from

%s2 %2

warehouse 2 to the demand centers. This is exactly the amount which is made i

available to warehouse 2 from the factories. Thus the conservation of flow
equations (5) have been satisfied. Because a proportional amount of the fixed
charge {s assigned to both the used and unused parts of the warehouse capacity,
the total fixed charge (s covered in any feasible solution.

Figure 5 contains an optimal solution to the 2x4x5 examples solved in
Section 6. In Figure 5, T = {1,3} so that warehouses 1 and 3 are opened, and t
warehouses 2, 4, and 5 are closed. Factory 1 is not used at all so that xl.lO e 61:
Factory 2 ships 21 units to warehouse 1, 40 units to warehouse 3, and 16 units dir-
ectly to demand center 1. Warehouse 1 ships all 21 of the units it received from
Factory 2 to demand center 3. The remaining unused 4 units of capacity at ware-

house | are in cell (3,1) and are charged at the proportional fixed charge rate.

All of the flow for warehouses 2, 4, and 5 is in the last column, and their demand

is satisfied entirely by the dummy factory. Warehouse 3 i{s used to capacity
shipping 22 units to demand center 2, and 18 units to demand center 4. In this
example each of the demand centers {s supplied from a single warehouse. This is
not the case in general.

The idea behind the cost operator approach to solving P(T) {is to open

the warehouses in T and close those in I - T by fixing in or out of the
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basis each of the cells (m,1) through (m,&) and (q+l, n) through g+, n).

For example the problem P(l), in which all of the warehouses are open, can be
obtained by solving the transportation problem shown in Figure 3. Then to

apply Rule ! in Section 3 we use two cost operators for each i ¢ I. For
example we would calculate 22,(1 - {3}) « 2(1) - 2(1 - {3]) by fixing in

cells (3,8) and (6,1). Doing this would yield a solution to the problem

shown in Figure 2, and permits the evaluation of Rule l. In general, the
addition of a warehouse to a given set or the deletion of a warehouse from a
given set requires the fixing in or out of two cells. The amount of work needed
to fix two cells in or out using cost operators is much less than the compu-
tational effort of solving a transshipment problem from scratch. Since the
branch and bound search algorithm to be described {n the next section requires
the solution of transshipment problems for many sets T, the total computational
effort saved by the fixing in and fixing out procedure is very large.

Also we should mention that in the case where 1’ =« @, as in single
stage problems, only one cost operator is needed to open or close a warehouse.
In the single stage formulation columns 1 through { and rows 1 through 2 are
absent. Thus in order to fix in or out warehouse { we need only apply a

cost operator tc cell (1,n).

S. he Co erator Algorithm.

To describe the cost operator branch and bound algorithm we use the fol-
lowing notation:

L = level of the search tree

Q = set of open warehouses

List (L) = list of warehouses which may be opened on level ¢




16
2" = current upper bound
X = current best solution.

We begin by setting L el, Q=@ and z" = 2(®) which is the (high)
cost of supplying all demands from the factories directly. Then Rule 1 (see
*
Section 3) is applied and we let Q = I . Then for each i ¢ I-Q we apply

the lower bound test (17) by setting T = Q U (i}, and checking to see whether

2z - T az a- {kh. (20)
keI-T d
If the right hand side of (29) (which is a lower bound on the value of H

Z2(Q « {1})) exceeds Zu. then warehouse { can be permanently closed. For
each 1 for which (20) holds true we apply cost operators to calculate szt(o).
if Ali(Q) > 0 then we permanently close warehouse i{. Then we let List(l) be h
the set of all 1 such that AZt(Q) < 0. (We place the warehouses in List (1)

in order of non-increasing objective function values.) Next we remove the

last warehouse, i, from List (1) and replace Q by Q U {i}. wWe let 2" « 2(Q),
update X. If List (1) {s empty then we stop. Otherwise we calculate k. as in
(19). 1If k. = | then we stop. Otherwise we replace £ br L 4+ 1 and

continue to the next level. At each level after the first, we perform the lower
bound test (20) for each warehouse, i, in List (L-1) by letting T = Q U {i}].

If warehouse i passes the test (20) we calculate AZ‘(Q). Again we let

List (L) be the set of warehouses such that azt(Q) < 0 1in nonincreasing order.
If List (L) i{s not empty we remove i, the last element of List (L); let

2" = 2(Q U (1)) and update X. If List (L) is now empty we backtrack by re-
placing 2 by 4-1, removing the last warehouse paced in Q and then continuing

« *
as before. Otherwise we calculate k as in (19). 1f 4 >k we bracktrack
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wi?s

as just descrided. Otherwise we replace & by &+1; replace Q by Q U {i},
and continue as before. The algorithm terminates when List (1) has been emptied.
Now we formally state the cost operator multi-stage location-allocation

algorithm
Step (1). (Initialization). Set & = 1; - 2(0). Apply Rule 1. Let Q = I..

For each { ¢ I-Q apply test (20), letting T = Q U {1]. For each {
which satisfies (20) calculate Azi(Q). Order those {1 such that
Azt(Q) < 0 1in nonincreasing order and place them in List (l1). 1If

List (1) empty go to Step (5). Otherwise let k be the last warehouse
in List (1). Let 2" = z@Q VU (k]); update X. Remove warehouse k from

List (1). If List (1) is empty go to Step (5). Otherwise go to Step (2).

* *
Step (2). (Bound by k ). Calculate k as in (19). If 4 > k* RO to Step (4).
Otherwise replace L by 4+1; replace Q by Q U {k} and go to

Step (3).

Step (3). (Forward branching). For each warehouse { {n List (L-1) apply
test (20) letting T = Q U {i]. For each i which satisfies (20)
calculate 32‘(Q). List those { such that Azt(Q) < 0 in non-in-
creasing order and place them in List (£). If List (L) {s empty go
to Step (4). Otherwise let k be the last warehouse in List (L).
Let z" = 2(Q U {k}]); update X. Remove warehouse k from List (£).

If List (L) is empty go to Step (4). Otherwise go to Step (2).

Step (4). (Backtracking). Replace 4 by 4-1. Remove from Q the last
wvarehouse placed in Q. If & = 1 and List (1) contains only one ware-

house go to Step (5). Otherwise let k be the last warehouse in List ().

s
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Remove k from List (L). 1If List (L) empty go to Step (4). Otherwise

replace Q by Q U {k}; replace 4 by Z+1 and go to Step (3).

Step (5). (Termination) Stop. The current solution X, 1is optimal.

Notice that each time Step (3) is performed a new list of feasible
solutions to P 1is available. Many times these solutions have nearly optimal
objective function values and thus they might be worthwhile to save.

After calculating l.. the cost operator algorithm proceeds to open, one
at a time, those warehouses which cause the largest decrease in the objective
function value. This is continued until at level 24, no further decrease in
the objective function value is possible (i.e. List (L) is empty). Then we move
to the backtracking Step (4). The best feasible solution obtained by the cost
operator algorithm before the first backtracking is called the greedy solution.
We denote by ZG the objective function value of the greedy solution. 1In (18],
a worst case bound on zC was derived for submodular set functions which is,

G « . *
- R I! ! + k -1 Q1)

- - « *
z(d- 2 1] « k

- *
where 2 is the optimal objective function value and k s obtained from (19).

In practice however, the actual percentage error obtained by the greedy solution is

auch smaller than the worst case bound. In Section 7 we will see that in most

cases the greedy solution value {s within .5 percent of optimality.

Finally we should point out that it would be trivial to "reverse' the
cost operator algorithm so that instead of starting with all of the warehouses
closed, and opening them one at a time, we could start with all of the warehouses

open and close them one at a time. This could be done by defining 2'(T) = Z(I-T)

et e
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in (1). 2'(T) 1is also submodular, and results from Section 3 would remain
valid for 2'. The reverse algorithm might be better suited to handle problems
where an optimal number of warehouses tends to be close to the total number

of potential warehouse sites.

6. Example.

Figure 4 shows the cost tableau for a 2x4x5 multistage location
problem. Fixed charges for warehouses 1-5 are: 150, 217, 200, 264, and 140.
For an explanation of how the costs in the tableau are calculated, see Figure 1
and Section 4. The diagram in Figure 6 is a 5-dimensional hypercube whose nodes
represent all of the possible open warehouse combinations. The search tree will
be a subgraph of this hypercube. The number above each node is the value of
an optimal solution to P when only those warehouses marked in circle of the
node are open. The number {n the parenthesis above a node is the total cost
lower bound for that node obtained by calculating (20).

We illustrate the steps of the algorithm applied to this example.

Step Calculations
(1) Set Lel, Qe@d. 2" = 2(9) = 2107. Applying Rule 1 we get

8z, (1 - {11) = 2303 - 2201 = 102; 82,(1 - {2}) = 217; 82,(2 - (3]) = 316;

32,(1 - (4)) = 162; 22,(1 - (5]) = 160. 1" = Q= 0. For each

{ ¢ (1,2,3,4,5) apply test (20). None of the lower bounds exceeds the

current upper bound. (See the numbers in parenthesis in Figure 6.) Next

calculate Azl(.) = 1880 - 2107 = -227; AZz(C) - -94; AZJ(O) - -123;

4z,(9) = -136; 22,(9) = -105. Let List (1) = {2,5,3,4). Let Q= {1};

u

Z = 1880; L = 2; go to Step (2).




(3)

(%)

(3)

(3)

(&)
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Calculations

2(1) = 2334; T f‘ = 1002; the fixed charge ordering is is = 140,
1el

'l = 150, f = 200, fz = 217, f3 = 264. The DV ordering is DV2
*
DV, = 0, DV =38, DV =42, DV, = 48. z" = 1880. Setting k = 2

we get from (19) 1332 + 290 + 38 - 1880 = 1332 + 490 + O,

= 0,

Since 2 = 1 <2, let L = 2; let Q= {1}; go to Step (3).

For each 1 € (2,5,4,3] apply test (20) setting T = {1} U {1}, (See
Figure 6.) For each { ¢ {2,5,4,3] calculate Azi({l}). Az3({l}) = -118.
sz, ((1)) = 32; 22,((1)) = 225 82,({1)) =-18. Let 2" = 1762,

List (2) = {2]. Go to Step (4).

Setting k = 2 we get from (19) 1332 + 290 + 38 = 1762 = 1332 4 490 + 0.

Since L = 2 >2 go to Step (4).

Let . = 1. Remove {1} from Q (now Q = @). Llet k = 4. Let

List (1) = {2,5,3}. let Q = {4}. Let & = 2; go to Step (3).

For each { ¢ (2,5,3) apply test (2) setting T = {4} U {i). All
solutions are fathomed (see -~umbers in parenthesis ‘n Figure 6).

List (2) = 9. Go to Step (4).

let L = 1, Remove (4) from Q (now Q = @). Let k = 3. Let

List (1) = {2,5}). Let Q= {3}. Let L = 2. Go to Step (3).

For each { ¢ {2,5) apply test (20) setting T = {3} U {1}. All

solutions are fathomed (see Figure 6). List (2) = . Co to Step (4).

let L = 1. Remove (3]} from Q. (now Q = @). Let k = 5. Let List (1) =

r

{2}, Let Q= {5). Let & = 2; Go to Step (3).

,F
i
a
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Step Calculacions
3) For 1 ¢ 12) apply test (20) setting T = {5 U {1]. The solution

is fathomed (see Figure 6). List (2) = 0. Go to Step (4).
(%) let &4 = 1. Go to Step (5).

(5) Stop. 2" = 1762 is optimal for warehouses {1,3). An optimal solution

is shown in Figure 5.

An optimal solution to the example is given in Figure 5 when warehouses
1 and 3 are opened. The greedy solution is optimal and is obtained at the circled
vertex (1,3} in Figure 6. The upper bound on an optimal number of warehouses,
k. » 2, was obtained in the first application of Step (2) and thus none of
level three warehouse combinations were examined. In total, 16 of the vertices
in Figure 6 were generated. Six of the vertices on level 2 were fathomed using

(20). The total number of transportation pivots required to solve the sample

problem was 85.

7. Computational Results.
The cost operator algorithm of Section 5 was coded in FORTRAN IV and

the runs were made on a DEC 20 time sharing system. Many of the problems were
run at different times during the day and thus the execution times may vary up
to ten or fifteen percent depending upon the computing load of the machine.
The maximum time alloted for solving any problem was 500 seconds.

All of the problems are derived from the Kuehn and Hamburger data which
was originally presented in [14]. Problem sets I through VII are taken from

Akinc and Khumawala [1], and VIII and IX are taken from Ellwein and Gray (8].
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These are single stage problems of the type Pl. Problem sets X through XV
are multistage problems which are solved here for the first time.

Since it is necel;:ry to read several articles to determine how the
problems I through VII were originally created, we will describe them here.
The Kuehn and Hamburger Jatn represents a multistage system with 3 factories,
24 potential warehouse sites, and 50 demand centers located in the continental
United States. Problems I through IV were formed by considering only the first

o

15 potential warehouse sites (i.e., Atlanta, Boston, through New Orleans as in

114]). To obtain the shipping costs (c from these sites to the 50 demand ‘

1j)
centers multiply each distance by $.025/mile unit cost, which is the bulk
shipping rate. The sixteenth warehouse is actually the factory at Indianapolis. i
W used the distance from Indifanapolis to the 50 demand centers multiplied by
$.0125/mile unit as its shipping cost. The factory at Indianapolis has the
same capacity as the other warehouses and it nhas a zero fixed charge. The
problems V through VII are set up in a similar fashion except that all 24
potential warehouse sites are used. Problems X through XV are multistage
problems which are also derived from the Kuehn and Hamburger data. All three i
factory sites were used. The factories have capacities of 30,700 or 35,000
units. To derive the shipping costs, we multiplied the distances from each
factory to each warehouse by $.0125/mile unit cost, and from each factory to
each demand center by .0375/mile unit cost. To get the shipping costs from the
warehouses to the demand centers, we multiplied the distance by $.0250/mile.

Table 1 contains a description of all of the test problems. Table 2

contains the computational results for the single stage problems and Table 3 for

the multistage problems. The percent error formula used to evaluate the greedy

solution was,




-
where Zc is the greedy value and 2 is the optimal value. Also included

in Table 2 are the execution times for the same problems solved in [1] and [17].
For test purposes the problem sets I through XV are very interesting be-
cause they contain problems with a wide range of difficulety.

The results for the greedy solution were startling. The largest percent
error incurred was 3.7 (see Table 2, IX), however in general the percent error
was less than .5 percent and the greedy solution was an optimal solution in 32
out of 51 problems.

Another interesting statistic {s the number of vertices required to find
the optimal solution as compared to the total number of vertices searched. An
optimal solution is usually located very early in the search process and most
of the effort is typically spent verifying {ts optimality. This experience is
similar to that found in solving other kinds of integer programming problems.

The set I'. which represents the warehouses fixed open in the initializa-
tion phase of the cost operator algorithm, often accounts for as much as 857
of the total number of open warehouses in an optimal solution. The uncapacitated
problems (sets IV, VII, XII, XV) were very easy to solve as expected. As far
as problem difficulty is concerned, those problems for which an optimal number
of warehouses {s approximately one half of the total number of potential ware-
house sites are usually the most difficult. This {s probably due to the fact

that the number of possible warehouse combinations, \L?2» when & {s

even or \(Le1)/2

) when L {s odd, {s the maximum of the binomial coefficients \:/.




The CPU times quoted {n Tables 2 were obtained by three different sets of
authors and are difficult to compare due to the differences in computers and in
programming efficiency. As far as machine speeds is concerned, the IBM 370/168
i{s the fastest, followed by the IBM 370/165 and then by the DEC-20. However,
actual speed ratio factors for pairs of the computing machines are virtually
impossible to find. It seems fair to state that the performance of the three
codes shown in the table are not significantly different; we may say they
represent the state of the art of computational results on these problems.

Table 3 exhibits computational results on multistage problems having
3 factories, 24 warehouses, and 50 demand centers. As can be noted, the computa-
tion times are relatively small and exhibit a relatively small variance for
integer programming problems. We again found the performance of the greedy
solution to be even better than for the single stage problems. This is perhaps
due to the fact that the factories have a large total capacity, and they can

ship to customers directly if many of the warehouses are closed down.

8. Conclusions.

We have presented a cost operator algorithm for solving multistage loca-
tion-allocation problems which does not employ problem relaxations as do the
other currently best approaches (1, 17]. Computational results indicate that
this method is competitive with the others. The greedy solutions obtained by
the method are usually extremely close to or are optimal. Also, because the
method computes many near optimal solutions as it solves the problem, these near
optimal solutions can be saved and printed out for use by a manager if he desires.
Computational results on the solution of multistage location problems are presented
here, but we have been unable to find other published results on such problems for

comparison. The performance of our method on these problems, is encouraging.

We wish to thank Professor Umit Akinc for supplying the Kuehn-Hamburger

data used in this paper.
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Table 3
Computational Results
p 4 # vertices Total Optimal Total CPU
Problem error to ¢ . L] v Time
Set Greedy Optimal Vertices I; I Warehouses Pivots (Dec-20)
X-1 0 56 14) 11 15 2414 11.88
X-2 .30 514 858 8 13 12287 61.39
' X-3 .24 277 680 6 11 7411 39.15
l X6 1.6 492 3627 1 7 39084 197.24_
XI-1 0 54 99 9 13 1708 8.51
X1-2 0 71 521 S 8 7895 36.09
XI1-3 0 62 184 5 8 2830 13.69
P -4 0 90 837 X 6 14523 66.88
XIl-1 .02 66 76 9 12 2874 17.69
XII1-2 0 69 352 5 8 6885 34.43
XII-3 0 75 452 4 8 8431 41.26
XII-4 0 81 499 3 6 10383 50.1
XIII-1 0 56 145 11 14 2412 12.16
XIrrr-2 .30 514 858 8 13 12144 62.97
XIII-3 .24 277 680 6 11 7840 4L5.44
XIII-4 Y 492 3627 1 7 41054 _246.83
XIv-1 0 54 100 9 13 2060 12.85
XIv-2 0 71 537 5 8 8480 44.7
XIv-3 0 62 184 S 8 3152 19.9
3 XIvV-4 0 90 838 2 6 14463 5.7
: Xv-1 .0l 73 84 9 12 3627 23.8
Xv-2 0 69 363 b 8 7813 44.3
Xv-3 0 75 454 4 8 9187 49.8
Vel ) 81 499 2 6 11234 60.53
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! Location Cost Operators
Location=-Allocation Network Location
Mixed Integer Programming
Submodularity
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The multistage factory-warehouse location-allocation problem is to decide
on locations of warehouses to meet customer demands in such a way that the total
fixed plus variable costs are minimized. Capacity constraints at factories and
warehouses are also imposed.

We present a cost operator algorithm for solvlng this problem. The algo-
rithm takes into account the network structure and the submodularity of the ob-
jective function. Computational results with problems taken from the literature

L as well as new problems are provided...
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